<span id="b53nr"><dl id="b53nr"><ruby id="b53nr"></ruby></dl></span><span id="b53nr"><video id="b53nr"></video></span>
<progress id="b53nr"><video id="b53nr"></video></progress>
<th id="b53nr"><video id="b53nr"><ruby id="b53nr"></ruby></video></th>
<strike id="b53nr"><dl id="b53nr"><del id="b53nr"></del></dl></strike><strike id="b53nr"><video id="b53nr"><ruby id="b53nr"></ruby></video></strike><strike id="b53nr"></strike>
<th id="b53nr"><video id="b53nr"><strike id="b53nr"></strike></video></th>
<ruby id="b53nr"><video id="b53nr"><ruby id="b53nr"></ruby></video></ruby>
<strike id="b53nr"></strike>
咨詢熱線: 021-51619676
網站公告: 誠信為本,市場在變,誠信永遠不變...
聯系方式

24小時全國服務熱線

021-51619676

如果您有任何疑問或是問題,請隨時與我們聯系

公司公告 當前位置:首頁>>新聞資訊>>公司公告

固相萃取儀從動件則按預定的運動作直線移動或擺動

時間:2020-04-18     瀏覽:28

工作中對氣閥的啟閉時序及其速度和加速度都 有嚴格的要求,固相萃取儀這些要求均由凸輪 # 的輪廓曲線來實現。 圖 !"$ 所示為錄音機卷帶裝置中的凸輪機構,凸輪 # 隨放 音鍵上下移動。放音時,凸輪 # 處于圖示最低位置,在彈簧 ! 的作用下,安裝于帶輪軸上的摩擦輪 % 緊靠卷帶輪 &,從而將 磁帶卷緊。停止放音時,凸輪 # 隨按鍵上移,其輪廓壓迫從動 件 $ 順時針擺動,使摩擦輪與卷帶輪分離,從而停止卷帶。 圖 !"% 所示為自動機床的進刀機構,利用凸輪機構來控制 進刀機構的自動進、退刀,其刀架的運動規律完全取決于凸輪 # 上曲線凹槽的形狀。 從以上所舉的例子可以看出,凸輪機構主要由凸輪、從動件和機架三個基本 構件組成。凸輪是一個具有曲線輪廓的構件,當它運動時,通過其上的曲線輪廓 與從動件的高副接觸,使從動件獲得預期的運動。凸輪機構在一般情況下,其凸 圖 !"# 錄音機卷帶機構 圖 !"$ 自動機床進刀機構 輪是原動件且作等速轉動,從動件則按預定的運動作直線移動或擺動。凸輪機 構的最大優點是,只要適當設計凸輪的輪廓曲線,從動件便可以獲得任意預定的 運動規律,而且結構簡單緊湊,因此它在各種機械中得到了廣泛的應用。凸輪機 構的缺點是凸輪和從動件之間為高副接觸,壓強較大、易于磨損,故這種機構一 般只用于傳遞動力不大的場合。 !"#"$ 凸輪機構的分類 工程實際中所使用的凸輪機構種類很多,常用的分類方法有以下幾種: !" 按凸輪形狀分 (%)盤形凸輪 如圖 !"% 所示,其凸輪是繞固定軸轉動且具有變化向徑的盤形構件,而且從 動件在垂直于凸輪軸線的平面內運動,這種凸輪機構應用最廣,但從動件的行程 較大時,則凸輪徑向尺寸變化較大,而當推程運動角較小時會使壓力角增大。 (#)移動凸輪 如圖 !"# 所示,其凸輪可看成是盤形凸輪的轉動軸線在無窮遠處,這時凸輪 作往復移動,從動件在同一平面內運動。盤形凸輪機構和移動凸輪機構是平面 !"# 凸輪機構的應用和分類 %%& 凸輪機構。 (!)圓柱凸輪 如圖 "#! 所示,凸輪的輪廓曲線做在圓柱體上,它可看成是將移動凸輪卷成 一圓柱體而得到的,從動件的運動平面與凸輪軸線平行,故凸輪與從動件之間的 相對運動是空間運動,稱為空間凸輪機構。 !" 按從動件形狀分 ($)尖頂從動件 如圖 "#%&、’ 所示,這種從動件的結構最簡單,能與任意形狀的凸輪輪廓保 持接觸,但因尖頂易于磨損,故只適宜于傳力不大的低速凸輪機構中。 (()滾子從動件 如圖 "#%)、* 所示,這種從動件與凸輪輪廓之間為滾動摩擦,耐磨損,可承受 較大的載荷,故應用最廣。 (!)平底從動件 如圖 "#%+、, 所示,這種從動件的優點是凸輪對從動件的作用力始終垂直于 從動件的底部(不計摩擦時),故受力比較平穩,而且凸輪輪廓與平底的接觸面間 容易形成楔形油膜,潤滑情況良好,故常用于高速凸輪機構中。 圖 "#% 從動件種類 另外根據從動件相對于機架的運動形式的不同,有作往復直線移動和往復 擺動兩種,分別稱為直動從動件(圖 "#%&、)、+)和擺動從動件(圖 "#%’、*、,)。在 直動從動件中,如果從動件的軸線通過凸輪回轉軸心,稱為對心直動從動件,否 則稱為偏置直動從動件,其偏置量稱為偏距 !。 #" 按凸輪與從動件保持接觸的方式分 凸輪機構在運轉過程中,其凸輪與從動件必須始終保持高副接觸,以使從動 件實現預定的運動規律。保持高副接觸常有以下幾種方式: ($)幾何封閉 $$- 第!章 凸輪機構及其設計 幾何封閉利用凸輪或從動件本身的特殊幾何形狀使從動件與凸輪保持接 觸。例如在圖 !"!# 所示的凸輪機構中,凸輪輪廓曲線做成凹槽,從動件的滾子 置于凹槽中,依靠凹槽兩側的輪廓曲線使從動件與凸輪在運動過程中始終保持 接觸。在圖 !"!$ 所示的等寬凸輪機構中,因與凸輪輪廓線相切的任意兩平行線 間的距離始終相等,且等于從動件內框上、下壁間的距離,所以凸輪和從動件可 以始終保持接觸。而在圖 !"!% 所示的等徑凸輪機構中,因在過凸輪軸心所作任 一徑向線上與凸輪輪廓線相切的兩滾子中心間的距離處處相等,故可以使凸輪 與從動件始終保持接觸。又如圖 !"!& 所示為共軛凸輪(又稱主回凸輪)機構中, 用兩個固結在一起的凸輪控制一個具有兩滾子的從動件,從而形成幾何形狀封 閉,使凸輪與從動件始終保持接觸。 圖 !"! 幾何封閉的凸輪機構 (’)力封閉 力封閉凸輪機構是指利用重力、彈簧力或其他外力使從動件與凸輪保持接 觸。圖 !"( 所示的凸輪機構是利用彈簧力來維持高副接觸。 以上介紹了凸輪機構的幾種分類方法。將不同類型的凸輪和從動件組合起 來,就可以得到各種不同形式的凸輪機構。設計時,可根據工作要求和使用場合 的不同加以選擇。 !"#"$ 凸輪機構設計的基本內容與步驟 凸輪機構設計的基本內容與步驟為: (()根據所設計機構的工作條件及要求,合理選擇凸輪機構的類型和從動 !"# 凸輪機構的應用和分類 (() 件的運動規律。 (!)根據凸輪在機器中安裝位置的限制、從動件行程、凸輪種類等,初步確 定凸輪基圓半徑。 (")根據從動件的運動規律,設計凸輪輪廓曲線。 (#)校核壓力角及輪廓最小曲率半徑,并且進行凸輪機構的結構設計。 !"# 從動件的運動規律 !"#"$ 凸輪機構的基本名詞術語 圖 $%&’ 為一對心尖頂直動從動件盤形凸輪機構,其一些基本術語為: 圖 $%& 對心尖頂直動從動件盤形凸輪機構 $" 基圓 以凸輪轉動中心為圓心,以凸輪輪廓曲線上的最小向徑為半徑所作的圓,稱 為凸輪的基圓,基圓半徑用 !( 表示。它是設計凸輪輪廓曲線的基準。 #" 推程 從基圓開始,向徑漸增的凸輪輪廓推動從動件,使其位移漸增的過程。 %" 行程 推程中從動件的最大位移稱為行程。直動從動件的行程用 " 表示,如圖 $%& 所示,它為從動件端部始點 # 到終點 $) 的線位移。



 &" 推程運動角 從動件的位移為一個行程時,凸輪所轉過的角度稱為推程運動角,用!( 表 *!( 第!章 凸輪機構及其設計 示,如圖 !"# 中!!"#。 !" 遠休止角 從動件在距凸輪轉動中心最遠位置靜止不動時,凸輪所轉過的角度稱為遠 休止角,用!$% 表示,如圖 !"# 中!#"$,它為凸輪廓線向徑最大的弧段 #$ 所對 的圓心角。 #" 回程 當凸輪轉動時,從動件在向徑漸減的凸輪廓線的作用下返回的過程稱為回 程,如圖 !"# 中,從動件在 $% 廓線的作用下,返回至原來最低位置。 $" 回程運動角 從動件從距凸輪轉動中心最遠的位置運動到距凸輪轉動中心最近位置時, 凸輪所轉過的角度稱為回程運動角,用!$ & 表示,如圖 !"# 所示。 %" 近休止角 從動件在距凸輪轉動中心最近位置 ! 靜止不動時,凸輪所轉過的角度稱為 近休止角,用!$’ 表示,如圖 !"# 所示,此時從動件與凸輪的基圓廓線接觸。 所謂從動件運動規律,是指從動件在推程或回程時,其位移、速度和加速度 隨時間 & 變化的規律。又因絕大多數凸輪作等速轉動,其轉角! 與時間 & 成正 比,所以從動件的運動規律常表示為從動件的上述運動參數隨凸輪轉角! 變化 的規律。表明從動件的位移隨凸輪轉角而變化的線圖稱為從動件的位移線圖, 如圖 !"#( 所示。通過上面分析可知:從動件的位移曲線取決于凸輪輪廓曲線的 形狀,也就是說,從動件的運動規律與凸輪輪廓曲線相對應。因此在設計凸輪 時,首先應根據工作要求確定從動件的運動規律,繪制從動件的位移線圖,然后 據其繪制凸輪輪廓曲線。 !"#"# 從動件基本的運動規律 工程實際中對從動件的運動要求是多種多樣的,與其適應的運動規律亦各 不相同,下面介紹幾種在工程實際中從動件基本的運動規律。 &" 多項式運動規律 從動件的運動規律用多項代數式表示時,多項式的一般表達式為 ’ ) $$ * $%! * $’!’ * . * $(!( (!"%) 式中 !———凸輪轉角; ’———從動件位移; $$ 、$% 、$’ 、.、$( ———待定系數,可利用邊界條件來確定。 較為常用的有以下幾種多項式運動規律。 (%)等速運動規律 等速運動規律是指凸輪以等角速度" 轉動時,從動件的運動速度為常數。 !"# 從動件的運動規律 %’% 在多項式運動規律的一般形式中,當 ! ! " 時,則有下式 " ! ## $ #"! $ ! %" %% ! #"" & ! %$ %% ! ü y t .. .. # (&’() 取邊界條件:!! #," ! #;!!!# ," ! ’;代入式(&’()整理可得,從動件推程 的運動方程為 " ! ’! #! $ ! %" %% ! ’" !# & ! %$ %% ! ü y t ... ... # (&’)) 圖 &’* 等速運動的運動曲線 根據運動方程可畫出推程的運動線圖如 圖 &’* 所示,由圖 &’* 可知,位移曲線為一斜直 線,故又稱直線運動規律;而從動件盡管在運 動過程中 & ! #,但在運動開始和終止的瞬時, 因速度由零突變為 ’" !# 和由 ’" !# 突變為零,所以 這時從動件的加速度在理論上為無窮大,致使 從動件突然產生無窮大的慣性力,因而使凸輪 機構受到極大的沖擊,這種沖擊稱為剛性沖 擊,且隨凸輪轉速升高而加劇。因此等速運動 規律,只宜用于低速輕載的場合。 (()等加速等減速運動規律 等加速等減速運動規律是指從動件在一 個運動行程中,前半個行程作等加速運動,后 半個行程作等減速運動,且加速度的絕對值相 等。在多項式運動規律的一般形式中,當 ! ! ( 時,則有下式 " ! ## $ #"! $ #(!( $ ! %" %% ! #"" $ (#("! & ! %$ %% ! (#(" ü y t .. .. ( (&’+) "(( 第!章 凸輪機構及其設計 取邊界條件:!! ",! ! "," ! ";!!!" # ,! ! # # ;代入式($%&)整理可得,前半 行程從動件作等加速運動時的運動方程為 ! ! ## !#" !# " ! &#" !#" ! $ ! &#"# ! ü y t ... ... #" ($%$’) 根據位移曲線的對稱性,可得從動件作等減速運動時的運動方程為 ! ! # ( ## !#" (!" (!)# " ! &#" !#" (!" (!) $ ! ( &#"# ! ü y t ... ... #" ($%$)) 由于從動件的位移 ! 與凸輪轉角! 的平方成正比,所以其位移曲線為一拋 物線,故又稱拋物線運動規律,其運動線圖如圖 $%* 所示。由圖可見,這種運動 規律的速度圖是連續的,不會產生剛性沖擊,但在 %、&、’ 三點加速度曲線有突 變,且為有限值,由此所產生的慣性力為一限值,將對機構產生一定的沖擊,這種 沖擊稱為柔性沖擊,因此等加速等減速運動規律也只適宜用于中速場合。 (+)$ 次多項式運動規律 在多項式運動規律的一般形式中,當 ( ! $ 時,其方程為 ! ! ’" , ’-! , ’#!# , ’+!+ , ’&!& , ’$!$ " ! .! .) ! ’-" , #’#"! , +’+"!# , &’&"!+ , $’$"!& $ ! ." .) ! #’#"# , /’+"#! , -#’&"#!# , #"’$"#! ü y t .. .. + ($%/) 取邊界條件:!! ",! ! "," ! ",$ ! ";!!!" ,! ! #," ! ",$ ! ";代入式($%/) 整理可得,從動件推程的運動方程為 ! ! # -" !+" !+ ( -$ !&" !& , /! $" ( !$ ) " ! #" +" !+" !# ( /" !&" !+ , +" !$" ( !& ) $ ! #"# /" !+" ! ( -*" !&" !# , -#" !$" ( ! ) ü y t ... ... + ($%0) !"# 從動件的運動規律 -#+ 圖 !"# 等加速等減速運動的運動曲線 圖 !"$ 五次多項式運動曲線 上式稱為五次多項式(或 %—&—! 多項式),圖 !"$ 為其運動線圖,由圖可 見,此運動規律既無剛性沖擊也無柔性沖擊,因而運動平穩性好,可用于高速凸 輪機構。 !" 三角函數運動規律 三角函數運動規律是指從動件的加速度按余弦曲線或正弦曲線變化。 (’)余弦加速度運動規律 這種運動規律是指從動件的加速度按’( 個周期的余弦曲線變化,其加速度 一般方程為 ! ) "*+, #!$ 式中 "、# 為常數,對此式積分并考慮邊界條件,可得余弦加速度運動規律的運 動方程為 % ) & ( ’ - *+, !" [ ( " ) ] . ’ ) &!! (". ,/0 !" " ( ) . ! ) &!(!( ("(. *+, !" " ( 


) ü y t ... ... . (!"#) ’(& 第!章 凸輪機構及其設計 根據運動方程可畫出推程的運動線圖,如圖 !"#$ 所示。由圖中可見,位移 曲線是一條簡諧線,故又稱簡諧運動規律。另由圖示可知,這種運動規律在開 始、終止兩點加速度曲線有突變,且為有限值,故也會產生柔性沖擊,因此余弦加 速運動規律也只適宜用于中速場合。若從動件用此運動規律作升—降—升的循 環運動,則無沖擊,故可用于高速凸輪機構。 圖 !"#$ 余弦加速度運動規律的運動曲線 (%)正弦加速度運動規律 這種運動規律是指從動件的加速度按整周期的正弦曲線變化,其加速度一 般方程為 ! & "’() #!$ 式中 "、# 為常數,對此式積分并考慮邊界條件,可得正弦加速度運動規律的運 動方程為 !"# 從動件的運動規律 #%! ! ! " "! ! !# $ %&’ "!! [ ( ! ) ] # # ! "" !# ( $ )*% "!! ! [ ( ) ] # $ ! ""!"" !"# %&’ "!! ! ( ) ü y t ... ... # (+,-) 根據運動方程可畫出推程的運動線圖,如圖 +,(( 所示。由圖中可見,位移 曲線是一條擺線,故又稱擺線運動規律。又由圖示可知,這種運動規律的速度和 加速度都是連續變化的,故沒有剛性和柔性沖擊,因此正弦加速運動規律可適宜 用于高速場合。 圖 +,(( 正弦加速度運動規律的運動曲線 由式(+,-)可知,位移方程系由兩部分組成,其中第一部分是一條斜直線方 程,第二部分則是一條正弦曲線方程。因此位移曲線可把這兩部分用作圖法疊 加而成,其作圖方法和步驟如圖 +,(" 所示。 !" 組合型運動規律 (". 第!章 凸輪機構及其設計 圖 !"#$ 正弦加速度運動規律位移曲線作圖方法 隨著對機械性能要求的不斷提高,對從動件運動規律的要求也越來越嚴 格。上述單一型運動規律已不能滿足工程的需要。利用基本運動規律的特點 進行組合設計而形成新的組合型運動規律,隨著制造技術的提高,其應用已相 當廣泛。 (#)基本運動規律的組合原則 #)按凸輪機構的工作要求選擇一種基本運動規律為主體運動規律,然后用 其他運動規律與之組合,通過優化對比,尋求最佳的組合形式。 $)在行程的起點和終點,有較好的邊界條件。 %)各種運動規律的連接點處,要滿足位移、速度、加速度以及更高一階導數 的連續。 &)各段不同的運動規律要有較好的動力性能和工藝性。 ($)組合型運動規律列舉 當要求從動件作等速運動,但行程起始點和終止點要避免任何形式的沖 擊。以等速運動規律為主體,在行程的起點和終點可用正弦加速度運動規律 或五次多項式運動規律來組合。圖 !" #% 為等速運動規律與五次多項式運動 規律的組合。改進后的等速運動( !" 段)與原直線的斜率略有變化,其速度也 有一些變化,但對運動影響不大。圖 !" #& 為改進的等加速等減速運動規律線 圖。 圖 !"#& 中,#!、"$、$%、&’ 段加速度曲線為#& 個正弦波,其周期為!$ 。這 種改進運動規律也稱改進梯形運動規律,具有最大加速度小,且連續性、動力性 好等特點,適用于高速場合。 !"# 從動件的運動規律 #$’ 圖 !"#$ 改進等速運動規律 圖 !"#% 改進等加速等減速運動規律 !"#"$ 從動件運動規律的選擇 選擇從動件運動規律時,涉及問題很多,首先應考慮機器的工作過程對其提 出的要求,同時又應使凸輪機構具有良好的動力性能和使設計的凸輪機構便于 加工等等,一般可從下面幾個方面著手考慮: !" 滿足機器的工作要求 這是選擇從動件運動規律的最基本的依據。有的機器工作過程要求從動件 按一定的運動規律運動,例如圖 !"$ 所示的自動車床驅動刀架用凸輪機構,為保 證加工厚度均勻、表面光滑,則要求刀架工作行程的速度不變,故選用等速運動 規律。 #" 使凸輪機構具有良好的動力性能 除了考慮各種運動規律的剛性、柔性沖擊外,還應對其所產生的最大速度 !&’( 和最大加速度 "&’( 及其影響加以分析、比較。通常最大速度 !&’( 越大,則從 動件系統的最大動量 #!&’( ( # 為從動件系統的質量)越大,故在起動、停車或 突然制動時,會產生很大沖擊。


因此,對于質量大的從動件系統,應選擇 !&’( 較 小的運動規律。另外最大加速度 "&’( 越大,則慣性力越大。由慣性力引起的 #*) 第!章 凸輪機構及其設計 動壓力,對機構的強度和磨損都有很大的影響,!!"# 是影響動力學性能的主要 因素,因此,高速凸輪機構要注意 !!"# 不宜太大。表 $% & 可供選擇從動件運動 規律時參考。 表 !"# 從動件常用運動規律特性比較 運動規律 最大速度 "!"# #! " ’ 最大加速度 !!"# #!( "( ’ 沖擊 適用范圍 等速 &)** + 剛性 低速輕載 等加等減 ()** ,)** 柔性 中速輕載 余弦 &)$- ,)./ 柔性 中速中載 正弦 ()** 0)(1 無 高速輕載 $" 使凸輪輪廓便于加工 在滿足前兩點的前提下,若實際工作中對從動件的推程和回程無特殊要求, 則可以考慮凸輪便于加工,而采用圓弧、直線等易加工曲線。 !"$ 凸輪輪廓曲線的設計 當根據使用場合和工作要求選定了凸輪機構的類型和從動件的運動規律 后,即可根據選定的基圓半徑等參數,進行凸輪輪廓曲線的設計。凸輪輪廓曲線 的設計方法有作圖法和解析法,但無論使用哪種方法,它們所依據的基本原理都 是相同的。故首先介紹凸輪輪廓曲線設計的基本原理,然后分別介紹作圖法和 解析法設計凸輪輪廓曲線的方法和步驟。 !"#"$ 凸輪輪廓曲線設計的基本原理 凸輪機構工作時,凸輪和從動件都在運動,為了在圖紙上繪制出凸輪的輪廓 曲線,希望凸輪相對于圖紙平面保持靜止不動,為此可采用反轉法。下面以圖 $%&$ 所示的對心直動尖頂從動件盤形凸輪機構為例來說明這種方法的原理。 如圖 $%&$ 所示,當凸輪以等角速度! 繞軸心 $ 逆時針轉動時,從動件在凸 輪的推動下沿導路上、下往復移動實現預期的運動?,F設想將整個凸輪機構以 2! 的公共角速度繞軸心 $ 反向旋轉,顯然這時從動件與凸輪之間的相對運動 并不改變,但是凸輪此時則固定不動了,而從動件將一方面隨著導路一起以等角 速度 2! 繞凸輪軸心 $ 旋轉,同時又按已知的運動規律在導路中作反復相對移 動。由于從動件尖頂始終與凸輪輪廓相接觸,所以反轉后尖頂的運動軌跡就是 凸輪輪廓曲線。 凸輪機構的形式多種多樣,反轉法原理適用于各種凸輪輪廓曲線的設計。 !"# 凸輪輪廓曲線的設計 &(. 圖 !"#! 反轉法原理 !"#"$ 用作圖法設計凸輪輪廓曲線 !" 直動尖頂從動件盤形凸輪機構 圖 !"#$% 所示為一偏置直動尖頂從動件盤形凸輪機構。設已知凸輪基圓半 徑 !& 、偏距 "、從動件的運動規律,凸輪以等角速度! 沿逆時針方向回轉,要求繪 制凸輪輪廓曲線。凸輪輪廓曲線的設計步驟如下: (#)選取位移比例尺"# ,根據從動件的運動規律作出位移曲線 # ’#,如圖 !"#$( 所示,并將推程運動角#& 和回程運動角#& ) 分成若干等分; (*)選定長度比例尺"$ +"# 作基圓,取從動件與基圓的接觸點 % 作為從動 件的起始位置; (,)以凸輪轉動中心 & 為圓心,以偏距 " 為半徑所作的圓稱為偏距圓。在 偏距圓沿 ’! 方向量取#& 、#&# 、#& ) 、#&* ,并在偏距圓上作等分點,即得到 ’# 、 ’* 、.、’#! 各點; (-)過 ’# 、’* 、.、’#! 作偏距圓的切線,這些切線即為從動件軸線在反轉過 程中所占據的位置; (!)上述切線與基圓的交點 (# 、(* 、.、(#! 則為從動件的起始位置,故在量取從 動件位移量時,應從 (# 、(* 、.、(#! 開始,得到與之對應的 %# 、%* 、.、%#! 各點; ($)將 %、%# 、%* 、.、%#! 各點光滑地連成曲線,便得到所求的凸輪輪廓曲 線,其中等徑圓弧段%.%) / 及%#! )% 分別為使從動件遠、近休止時的凸輪輪廓曲線。 對于對心直動尖頂從動件盤形凸輪機構,可以認為是 " + & 時的偏置凸輪機 構,其設計方法與上述方法基本相同,只需將過偏距圓上各點作偏距圓的切線改 #,& 第!章 凸輪機構及其設計 圖 !"#$ 偏置直動尖頂從動件盤形凸輪設計 為過基圓上各點作基圓的射線即可。 !" 直動滾子從動件盤形凸輪機構 圖 !"#% 所示為偏置直動滾子從動件盤形凸輪機構,其輪廓曲線具體作圖步 驟如下:將滾子中心 ! 當作從動件的尖頂,按照上述尖頂從動件盤形凸輪輪廓 曲線的設計方法作出曲線!& 


,這條曲線是反轉過程中滾子中心的運動軌跡,稱 為凸輪的理論輪廓曲線;以理論輪廓曲線上各點為圓心,以滾子半徑 "’ 為半徑, !"# 凸輪輪廓曲線的設計 #(# 作一系列的滾子圓,然后作這族滾子圓的內包絡線!,它就是凸輪的實際輪廓曲 線。很顯然,該實際輪廓曲線是上述理論輪廓曲線的等距曲線,且其距離與滾子 半徑 !! 相等。但須注意,在滾子從動件盤形凸輪機構的設計中,其基圓半徑 !" 應為理論輪廓曲線的最小向徑。 圖 #$%& 對心直動滾子從動件盤形凸輪設計 !" 對心直動平底從動件盤形凸輪機構 圖 #$%’ 所示為對心直動平底從動件盤形凸輪機構,其設計基本思路與上述 滾子從動件盤形凸輪機構相似。輪廓曲線具體作圖步驟如下:取平底與從動件 軸線的交點 " 當作從動件的尖頂,按照上述尖頂從動件盤形凸輪輪廓曲線的設 計方法,求出該尖頂反轉后的一系列位置 "% 、"( 、.、"%# ;然后過點 "% 、"( 、.、 "%# 作一系列代表平底的直線,則得到平底從動件在反轉過程中的一系列位置, 再作這一系列位置的包絡線即得到平底從動件盤形凸輪的實際輪廓曲線。 #" 擺動尖頂從動件盤形凸輪機構 圖 #$%)* 所示為一擺動尖頂從動件盤形凸輪機構。設已知凸輪基圓半徑 !" 、凸輪軸心與擺桿中心的中心距 #$" 、從動件(擺桿)長度 %"& 、從動件的最大擺 角"+*, 以及從動件的運動規律(如圖 #$%)- 所示),凸輪以等角速度# 沿逆時針 %.( 第!章 凸輪機構及其設計 圖 !"#$ 對心直動平底從動件盤形凸輪設計 圖 !"#% 擺動尖頂從動件盤形凸輪設計 方向回轉,要求繪制凸輪輪廓曲線。根據反轉原理,當給整個機構以 &! 反轉 后,凸輪將不動而從動件的擺動中心 ! 則以 &! 繞 " 點作圓周運動,同時從動 件按給定的運動規律相對機架 "! 擺動,因此凸輪輪廓曲線的設計步驟如下: !"# 凸輪輪廓曲線的設計 #’’ (!)選取適當的比例尺,作出從動件的位移線圖,在位移曲線的橫坐標上將 推程角和回程角區間各分成若干等分,如圖 "#!$% 所示。與移動從動件不同的 是,這里縱坐標代表從動件的角位移!,因此其比例尺應為 ! && 代表多少角度。 (’)以 ! 為圓心、以 "( 為半徑作出基圓,并根據已知的中心距 #!$ ,確定從動 件轉軸 $ 的位置 $( 。然后以 $( 為圓心,以從動件桿長度 #$% 為半徑作圓弧,交基 圓于 &( 點。$( &( 即代表從動件的初始位置,&( 即為從動件尖頂的初始位置。

 ())以 ! 為圓心,以 !$( 為半徑作圓,并自 $( 點開始沿著 *" 方向將該圓 分成與圖 "#!$% 中橫坐標對應的區間和等分,得點 $! 、$’ 、.、$$ 。它們代表反 轉過程中從動件擺動中心 $ 依次占據的位置。 (+)以上述各點為圓心,以從動件桿長度 #$% 為半徑,分別作圓弧,交基圓于 &! 、&’ 、.、&$ 各點,得到從動件各初始位置 $! &! 、$’ &’ 、.、$$ &$ ;再分別作 !&! $! %! 、!&’ $’ %’ 、.、!&$ $$ %$ ,使它們與圖 "#!$% 中對應的角位移相等, 即得線段 $! %! 、$’ %’ 、.、$$ %$ 。這些線段代表反轉過程中從動件所依次占據 的位置,而 %! 、%’ 、.、%$ 諸點為反轉過程中從動件尖頂所處的對應位置。 (")將點 %! 、%’ 、.、%$ 連成光滑曲線,即得凸輪的輪廓曲線。 "!" 直動從動件圓柱凸輪機構 圓柱凸輪的輪廓曲線是一條空間曲線,不能直接在平面上表示。但由于圓 柱面可以展開成平面,故圓柱凸輪展開便成為平面移動凸輪,因此可以運用前述 盤形凸輪的設計原理和方法,來繪制它展開后的輪廓曲線。 圖 "#’( 直動從動件圓柱凸輪設計 圖 "#’(, 所示為一直動從動件圓柱凸輪機構。設已知凸輪的平均圓柱體半 徑 ’、滾子半徑 "- 、從動件運動規律(如圖 "#’(. 所示)以及凸輪的回轉方向

Copyright(C) 2016-2021 上海那艾實驗儀器有限公司(www.moshuo.net)版權所有 | 滬ICP備16033204號-16
sitemap.xml    本站儀器:固相萃取儀 固相萃取裝置 固相萃取柱 
亚洲欧美变态另类丝袜第一区
<span id="b53nr"><dl id="b53nr"><ruby id="b53nr"></ruby></dl></span><span id="b53nr"><video id="b53nr"></video></span>
<progress id="b53nr"><video id="b53nr"></video></progress>
<th id="b53nr"><video id="b53nr"><ruby id="b53nr"></ruby></video></th>
<strike id="b53nr"><dl id="b53nr"><del id="b53nr"></del></dl></strike><strike id="b53nr"><video id="b53nr"><ruby id="b53nr"></ruby></video></strike><strike id="b53nr"></strike>
<th id="b53nr"><video id="b53nr"><strike id="b53nr"></strike></video></th>
<ruby id="b53nr"><video id="b53nr"><ruby id="b53nr"></ruby></video></ruby>
<strike id="b53nr"></strike>